

Android Security: A Broad Overview &
A Dive into the World of Advertising
Dan S. Wallach (Rice University)

Android development 101
Android apps are written in Java 6 (no lambdas, no streams)
Download and install Java SE, Android Studio (IntelliJ), and tons of Android SDKs
Start building a basic “Hello World” and work up from there

Android Studio generates lots of boilerplate
You lay out your UI with a graphical tool
Basic Java code to put it together is auto-generated

Android “emulator” is easy to use

Android Security Basics

Bugs = exploits:
How do you write bug-free code?
Android apps are written in Java
No buffer overflows, heap overflows, use-after-free, etc.
Most system services, APIs, etc. also written in Java

C is available (via JNI) but most apps don’t use it much
Maybe some use in games

Android process isolation
Each app runs with its own Unix user-id (based on digital signature)
Private local storage (akin to multi-user Unix)

We’re not depending on Java for isolation. This isn’t Java applets.

Apps must request “permissions” to do dangerous things.
Access the Internet, access local storage, access your photos, etc.

Some permissions are more interesting than others.
Access your microphone, be your SMS app, etc.

Evolving permissions UX
Prior to Android 6 (“Lollipop” and earlier):
All permission requests made in the app manifest (an XML file).
User sees permission dialog at install time. Take it or leave it.
Android 6 (“Marshmallow”):
Apps compiled against the new APIs must request permissions at runtime.
But every app now gets full Internet privileges without asking!
User can revoke permissions, even for older apps.

(CyanogenMod’s SecurityGuard will provide fake results, e.g., empty contacts list,
while Android 6 will throw a security exception.)

SELinux / SEAndroid
Mandatory access controls built into the kernel

Not user-visible, mostly used by the system to lock itself down

So we’re good, right?
Apps are isolated from one another.

Permissions are approved/denied by users.

Relatively few vulnerabilities from common C bug patterns.

So we’re good, right? Nope.
Apps are isolated from one another.
Apps like to chat via IPC (“Binder” and “Intents”).
Opportunities for “confused deputy” attacks.
Permissions are approved/denied by users.
Dialog fatigue: users tend to say “yes” to anything.
Improvements in Android 6: asking at time-of-use instead of time-of-install.
Relatively few vulnerabilities from common C bug patterns.
Many libraries still implemented in C (media decoders, browser, etc.)
But can we auto-update around the problem?

The auto-update issue
Example: Android’s WebView widget (WebKit-based)
Like Chrome or any other browser, frequent updates are part of the security model.
Android 4.3 or earlier: WebView was baked into the system.
Android 4.4 and later: WebView is separately installed / updated from the Play Store.
“Google Play Services”: rolling big chunks of Android into an app
Security goodness: auto-updates from Google, new services on old platforms.
Big chunks of Android are no longer open source.
And Chinese Android phones aren’t connected to the Play Store at all.
Latest news: Google and the OEMs are finally embarrassed about this.
Google is releasing monthly security updates for Nexus phones.
Other OEMs (hopefully) getting on board.

Android version distribution in the wild
Almost 73% are new enough to get WebView updates. Good, but not enough.

{Good

Data as of March 2016

The app store “quality control” issue
Claimed benefit of Apple App Store vs. Google Play Store:
Apple tries to keep garbage apps out.
Google now has its “Bouncer” service:
Very little written in public.
Seems to be some combination of static and dynamic analysis.

Both Google and Apple can remotely uninstall malware apps.

Authentication
Apple and Google are furiously adding new features for this. E.g.,

“Smart Lock”: Your Android device pays attention to paired Bluetooth
devices (car, watch, etc.) and decides whether to ask for your password.

Fingerprint reader: Much like Apple, much more user-friendly than
passwords, and under various circumstances the phone will still ask for
the password (e.g., when booting).

Federated identity: as in OpenID/Oauth, the user can approve and an app
can authenticate as you without requiring your password.

Android: Security vs. Advertising

Smartphone security is tricky
Sensitive info available
Fine grained geolocation
User’s address book
Phone unique identifiers (IMEI,
etc.)
Personal photos
Some apps abuse their access

Smartphone security is tricky
Sensitive info available
Fine grained geolocation
User’s address book
Phone unique identifiers (IMEI,
etc.)
Personal photos
Some apps abuse their access

Smartphone security is tricky
Sensitive info available
Fine grained geolocation
User’s address book
Phone unique identifiers (IMEI,
etc.)
Personal photos
Some apps abuse their access

When asked why Path didn’t give users the choice to opt-in right from the start, [Path
CEO] Morin responded with the following:

This is currently the industry best practice and the App Store guidelines do not
specifically discuss contact information. However, as mentioned, we believe users
need further transparency on how this works, so we’ve been proactively addressing
this.

techcrunch.com/2012/02/07/path-uploads-your-iphones-address-book-to-their-servers-without-a-peep/

Smartphone research

Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach, Quire: Lightweight Provenance for
Smartphone Operating Systems, 21st USENIX Security Symposium (San Francisco, CA), August 2011.

Shashi Shekhar, Michael Dietz, Dan S. Wallach, AdSplit: Separating smartphone advertising from applications, 22nd
USENIX Security Symposium (Bellevue, WA), August 2012.

Theodore Book, Adam Pridgen, and Dan S. Wallach, Longitudinal analysis of Android ad library permissions.
Mobile Security Technologies (MOST) 2013.

Theodore Book and Dan S. Wallach, A case of collution: A study of the interface between ad libraries and their
apps. 3rd ACM Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM), November 2013.

New OS services

Measurements

http://www.cs.rice.edu/~dwallach/pub/quire2011.html
http://www.cs.rice.edu/~dwallach/pub/quire2011.html
http://www.cs.rice.edu/~dwallach/pub/quire2011.html
http://www.cs.rice.edu/~dwallach/pub/quire2011.html
http://arxiv.org/find/cs/1/au:+Shekhar_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Shekhar_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Dietz_M/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Dietz_M/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Wallach_D/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Wallach_D/0/1/0/all/0/1
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857

ADS!

Cost : Free Cost : $2.99

Cost : Free Cost : $2.99
Downloads:
100,000 – 500,000

Cost : Free Cost : $2.99
Downloads:
10,000,000 – 50,000,000

Downloads:
100,000 – 500,000

Ads are widely used

Ads are widely used

(and advertising uses 75% of the power budget - Pathak et al., Eurosys 2012)

Ecosystem similar to web

App developer gets money for hosting ads

Ads are third party libraries included with the app

Mobile advertisements

More
 user data = Better

targeting = $

Ad libraries incentivize developers to leak user data.

Targeted advertising 101

More
 user data = More

permissions

Permission bloat: Apps requesting permissions exclusively for advertisements.

Even worse... permission usage

Permission use
over time: is it
getting worse?

Ad libraries
114,000 apps analyzed
56% contained at least one ad library
108,000 ad library copies identified
68 different ad library families identified

38 % of Apps

38 % of Apps

Top 10: 71% of Installs
Top 25: 90% of Installs
Top 33: 95% of Installs

Dating ad libraries
Metadata for apps retrieved from Google Play:
Install count (As a range: e.g. 5,000 – 10,000)
Release date for latest version

The release date of the earliest app using a library approximates the library
release date.

Measuring permission usage
Separate library code from application code

Simple static analysis of library code to extract Android API calls

Stowaway (Felt, et al., 2011)

Map API calls to Android permissions

PScout (Au, et al., 2012)

Caveats
We are examining libraries, not applications

Don't verify if a library routine is used by any particular application

Don't verify if necessary permissions found in manifest

Don't detect dynamically loaded / generated code
(Grace, et al., “Unsafe Exposure,” 2012)

Internet
Retrieve ads
Report usage

Vibrate
Notifies you about important ads!

Read Phone State
Get IMEI number

WiFi State
Access MAC Address

Check Connection Type

Wake Lock
Video API calls

Network State
Check Connection Type

Access Location

“Dangerous”
Collection of Permissions

Install-weighted permissions

“Dangerous” Permissions

“Dangerous” Permissions

Get Tasks
See what else is running

“Dangerous” Permissions

Read History and Bookmarks
What are your favorite web pages?

“Dangerous” Permissions

Get Accounts
your Google ID...

and Facebook, too!

“Dangerous” Permissions

Read Contacts
Getting to know you...

“Dangerous” Permissions

Change WiFi State
Load those video ads!

“Dangerous” Permissions

Record Audio
Just listening!

“Dangerous” Permissions

Camera
Smile!

The App Purge of 2013

What did Google do?
Resampled our apps from Google Play
Analyzed “missing” apps

Apps with certain libraries tended to disappear

Google’s action vs. ad library

Ad Library
Percent of Apps

Removed
EverBadge 60.5%
Hunt Mobile 45.5%
AirPush 40.7%
SendDroid 31.2%
Waps 29.7%
TapIt 28.4%
Average 11.6%

Are apps leaking
sensitive data?

Ad libraries have sensitive APIs

Goal: enumerate use of APIs in top-20 ad libraries from our corpus of
Android apps

Example: API for InMobi

How often are these APIs used?

Calls vs. Install Count

N
um

be
r o

f c
al

ls
 p

er
 a

pp

Calls vs. Install Count

N
um

be
r o

f c
al

ls
 p

er
 a

pp

Popular apps benefit from additional
revenue

Calls vs. Install Count

N
um

be
r o

f c
al

ls
 p

er
 a

pp

Top apps can’t get away with misbehavior

Popular apps benefit from additional
revenue

Web Ad Security =
Mashup Security

Web mashup security
Advertisements usually hosted in <IFRAME>

 è Application code separation

Same origin policy restricts network access
 è Harder for web page to forge clicks

Android has no equivalent mechanisms

AdSplit Architecture
App layering/separation

Click delegation

OS attaches verifiable statements to clicks

Ads verify their visibility

Ad

Buy! Cool! Stuff!

Sample App

(transparent, so ad is visible)

AppA
Category: Education

AdLibrary

AppB
Category: Gaming

AdLibrary

AppA and AppB include same ad library but can see different ads based on
category.

Before

Process separation

AppA
Category: Education

AdLibrary_AppA

AppB
Category: Gaming

A distinct instance of ad library per host app.

After

AdLibrary_AppB

Process separation

Lifecycle management
Launch ad activity with host activity

Change activity stack to insert and remove ad activity with host activity

User Input
User input validation based on Quire [UsenixSec ’11]
HMAC-signed touch events with timestamps
Ad service can verify visibility & layout
Supported by stock Android queries

Automated separation
com.example.app

Decompile

com/admob/android

Manifest
Processor

com.example.app

Compile

AndroidManifest.xml

com/example/app

com/admob/android

AndroidManifest.xml

com/example/app

com/admob/android

AdMob Stub

Touch event validation

Touch event validation

Event
System

Touch event validation

Event
System

Host
activity

Signed Touch

Touch event validation

Event
System

Host
activity

Ad service

Signed Touch

Signed Touch

Touch event validation

Event
System

Quire
Authority
Manager

Host
activity

Ad service

Signed Touch

Verify Signature

Signed Touch

Touch event validation

Event
System

Quire
Authority
Manager

Host
activity

Ad activityAd service

Signed Touch

Verify Signature

Signed Touch

Forward Touch

Why not automatic?
Need to re-engineer for every ad library

Missed opportunity to have verifiable provenance
Local crypto service could sign event messages from ads
Remote server could verify event authenticity, deter click fraud

(Details: see our Quire paper in Usenix Security 2011)

Most ad libraries embed an HTML WebView widget
Advertisers like HTML + JavaScript (portability, etc.)

System-provided ad widget could be a substitute!

Insight: Ads use HTML!

AdWebView Benefits
No advertising native-code installation required

Browser logic enforces same-origin privileges

No permissions required!

Ads still run in a separate activity, separate UID

Defense in depth

Policy questions
Sensitive privileges (geolocation, etc.)?

Host apps might leak sensitive data to ads

Ad blocking?

Power rationing?

Memory Overhead

Hello World 1.4 MB

Stock Android

Memory Overhead

Hello World 1.4 MB

WebView +1.9 MB

AdMob +3.4 MB

Stock Android

Memory Overhead

Hello World 1.4 MB

WebView +1.9 MB

AdMob +3.4 MB

Stock Android

Hello World 1.4 MB

WebView +1.9 MB

AdSplit

Memory Overhead

Hello World 1.4 MB

WebView +1.9 MB

AdMob +3.4 MB

Stock Android

Hello World 1.4 MB

WebView +1.9 MB

AdSplit

New Activity +1.4 MB

WebView +1.9 MB

AdMob +3.4 MB

Memory Overhead

Hello World 1.4 MB

WebView +1.9 MB

AdMob +3.4 MB

Stock Android

Hello World 1.4 MB

WebView +1.9 MB

AdSplit

New Activity +1.4 MB

WebView +1.9 MB

AdMob +3.4 MB
Not needed!

Aside: WebView security
Browsers need security updates
WebView is yet another WebKit derivative
Software updates broken out from core Android in 4.4

Google has abandoned backports for older versions
>50% of Android market no longer supported
Official advice: always use local sourced data or HTTPS

Advertising libraries use WebView
Generally over vanilla HTTP
AdMob notably encrypts the location field

Related Work
Confused Deputy Issues
Felt et al., Permission Re-Delegation: Attacks and Defenses (USENIX Security 2011)
Bugiel et al., Towards Taming Privilege-Escalation Attacks on Android (NDSS 2012)
Grace et al., Systematic Detection of Capability Leaks in Stock Android Smartphones (NDSS 2012)

Advertising
Pearce et al., AdDroid: Privilege Separation for Applications and Advertisers in Android (AsiaCCS 2012)
Grace et al., Unsafe Exposure Analysis of Mobile In-App Advertisements (WiSec 2012)
Leontiadis et al., Don't kill my ads! Balancing Privacy in an Ad-Supported Mobile Application Market (HotMobile 2012)

and lots more being published every day...

http://www.internetsociety.org/towards-taming-privilege-escalation-attacks-android
http://www.internetsociety.org/towards-taming-privilege-escalation-attacks-android
http://www.internetsociety.org/systematic-detection-capability-leaks-stock-android-smartphones
http://www.internetsociety.org/systematic-detection-capability-leaks-stock-android-smartphones
http://www.cl.cam.ac.uk/~il235/HotMobile12_Leontiadis.pdf
http://www.cl.cam.ac.uk/~il235/HotMobile12_Leontiadis.pdf

Other security
topics

Nation-state attacks against your phone?
With the FBI asking Apple to produce custom signed firmware...

Could this be an issue with Android? Absolutely, but vendor-dependent.
Each vendor has their own release process, some will cooperate, others not.

The big unknown: the “baseband processor” and the ARM “TrustZone”
Separate operating systems, separate vulnerabilities.

Data-at-rest encryption / physical attacks
Standard support in Android 5.0, on by default in Android 6.0
Boot-time password requests, linked to decryption.

USB attacks?
Phone UI must be unlocked, user asked to approve computer’s public key.
“Boot locked” phone will refuse to install Android update that’s not Google-signed.
Boot unlocking will zero out the phone. Most users never do this.
USB-C allows for bidirectional data flow or even charging.

UI support for charge-only.

Copy protection / DRM
Piracy is a huge issue
Apps can be reverse-engineered, tweaked, and redistributed.

Perhaps with added malware! Likely with added advertising.

APIs let you query the Play Store
Verify the user paid.
But don’t trust your local storage; user might have changed it.

Code obfuscators don’t seem to be a meaningful defense
ProGuard is a standard part of the Android SDK, very good at shrinking things.

Unsurprisingly, in-game-purchases and advertising are increasingly popular.

The future of Android?
Google is famously, amazingly secretive about whatever’s coming next.
Example: What about Java8 support? Dead silence.

The good news: Android’s market share is immense.
Massive tool support from industry & open source.
Example: You like Apple’s Swift? Try JetBrains’s Kotlin. Built into newer IntelliJ.

So, even if Google is unhelpful, there’s at least a huge dev community.
And some of their advice is occasionally helpful.

